# Electrical Engineering 229A Lecture 2 Notes

### Daniel Raban

August 31, 2021

# 1 Entropic Quantities Relating Random Variables

#### 1.1 The binary entropy function

Suppose we have a probability distribution  $p = (p_1, \ldots, p_d)$  on a finite set of  $\mathscr{X}$  of size d, say  $\mathscr{X} = \{1, \ldots, d\}$ . We will use the notation  $[d] = \{1, \ldots, d\}$ . The function

$$H(p_1,\ldots,p_d) = -\sum_{j=1}^d p_j \log p_j$$

is called the entropy of the distribution p. Last lecture we saw that  $H \ge 0$  and  $H(p_1, \ldots, p_d) \le H(1/d, \ldots, 1/d) = \log d$  as a consequence of the *concavity* of H as a function on the unit d-simplex. Concavity of H means that for  $\lambda \in [0, 1], \ H(\lambda p^{(1)} + (1 - \lambda)p^{(0)}) \ge \lambda H(p^{(1)}) + (1 - \lambda)H(p^{(0)}).$ 



**Example 1.1.** For d = 2,  $H(p, 1 - p) = -p \log p - (1 - p) \log(1 - p)$ . We denote this as h(p).



The function h(p) is known as the **binary entropy function**. The graph is very steep near 0; all the derivatives approach  $\infty$ . h(1/2) = 1, and h(p) = h(1-p). We can calculate

$$h'(p) = \log_2 e(-\log_e p - 1 + \log_e (1 - p) + 1)$$
  
=  $\log \frac{1 - p}{p}$ ,

which is  $+\infty$  at p = 0 and  $-\infty$  at p = 1. We can check

$$h''(p) = \log_2 e\left(-\frac{1}{1-p} - \frac{1}{p}\right),$$

which is  $-\infty$  at p = 0 and p = 1.

#### 1.2 Convexity and Jensen's inequality

**Definition 1.1.** A set  $D \subseteq \mathbb{R}^n$  is convex if when  $\lambda \in [0,1]$  and  $x^{(0)}, x^{(1)} \in D$ ,  $\lambda x^{(0)} + (1-\lambda)x^{(1)} \in D$ , as well.

**Definition 1.2.** A function  $f: D \to \mathbb{R}$  where  $D \subseteq \mathbb{R}^n$  is a convex set is called a **convex function** if for all  $\lambda \in [0, 1]$  and  $x^{(0)}, x^{(1)} \in D$ , we have

$$f(\lambda x^{(1)} + (1 - \lambda)x^{(0)}) \le \lambda f(x^{(1)}) + (1 - \lambda)f(x^{(0)}).$$

This implies that if for any  $m \ge 1, x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in D$  and any probability distribution  $(\lambda_1, \ldots, \lambda_m)$  on [m], we have

$$f\left(\sum_{i=1}^{m} \lambda_i x^{(i)}\right) \le \sum_{i=1}^{m} \lambda_i f(x^{(i)}).$$

More generally, we have the following:

**Theorem 1.1** (Jensen's inequality). For any random variable Z taking values in a convex set  $D \subseteq \mathbb{R}^n$ ,

$$f(\mathbb{E}[Z]) \le \mathbb{E}[f(Z)].$$

#### **1.3** Joint and conditional entropy

If X is a random variable taking values in [d], we write H(X) for  $H(p_1, \ldots, p_d)$ , where  $p_i := \mathbb{P}(X = i)$ . If X takes values in  $\mathscr{X}$ , then H(X) denotes  $H(p(x), x \in \mathscr{X})$ , where  $p(x) := \mathbb{P}(X = x)$ . Now suppose X takes values in  $\mathscr{X}$  and Y takes values in  $\mathscr{Y}$ , where  $\mathscr{X}, \mathscr{Y}$  are finite sets. They have a joint probability distribution  $(p(x, y), (x, y) \in \mathscr{X} \times \mathscr{Y})$ .

**Definition 1.3.** The **joint entropy** of the pair (X, Y), which is just a random variable taking values in  $\mathscr{X} \times \mathscr{Y}$ , is denoted H(X, Y) and equals

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y).$$

**Definition 1.4.** The difference H(X, Y) - H(X), denoted H(Y | X), is called the **conditional entropy** of Y given X.

Recall that the entropy is  $H(X) = \mathbb{E}[\log 1/p(X)]$ . The joint entropy can be written similarly:

$$H(X,Y) = \mathbb{E}\left[\log\frac{1}{p(X,Y)}\right].$$

We can also write the conditional entropy as

$$\begin{split} H(Y \mid X) &= \mathbb{E}\left[\log\frac{1}{p(Y \mid X)}\right] \\ &= \sum_{x,y} p(x,y)\log\frac{1}{p(y \mid x)} \\ &= \sum_{x} p(x)\sum_{y} p(y \mid x)\log\frac{1}{p(y \mid x)}. \end{split}$$

For each fixed  $x \in \mathscr{X}$ ,  $\sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}$  is denoted  $H(Y \mid X = x)$ . It is the entropy of the conditional distribution of Y given that X = x. With this notation,

$$H(Y \mid X) = \sum_{x} p(x)H(Y \mid X = x).$$

**Remark 1.1.** This notation is not consistent with the rest of probability notation. H(Y | X) is a number, rather than a random variable. This notation is widespread in information theory, however, because it was introduced by Shannon himself.

From this formula, we can see that  $H(Y \mid X) \ge 0$ .

## 1.4 Mutual information

We might hope that we "learn" about Y from observing X, i.e. the uncertainty in Y is reduced. That is, we hope that  $H(Y) \ge H(Y \mid X)$ . This is true.

**Definition 1.5.** H(Y) - H(Y | X) is denoted I(X; Y) (or sometimes denoted as  $I(X \land Y)$ ) and is called the **mutual information** between X and Y.

We have

$$I(X;Y) = \mathbb{E}\left[\log\frac{1}{p(Y)}\right] - \mathbb{E}\left[\log\frac{1}{p(Y\mid X)}\right]$$
$$= \mathbb{E}\left[\log\frac{p(X,Y)}{p(X)p(Y)}\right]$$
$$= \sum_{x,y} p(x,y)\log\frac{p(x,y)}{p(x)p(y)}.$$

This is symmetric when X and Y are interchanged. That is, I(X;Y) = I(Y;X).

#### 1.5 Relative entropy

 $I(X, Y) \ge 0$  because it is a relative entropy.

**Definition 1.6.** Given two probability distributions  $(p(z), z \in \mathscr{Z})$  and  $(q(z), z \in \mathscr{Z})$ , we write

$$D(p \mid\mid q) = \sum_{z \in \mathscr{Z}} p(z) \log \frac{p(z)}{q(z)},$$

which is called the **relative entropy** of p with respect to q. It is also called the **informa**tion distance/divergence of p from q or the Kullback-Leibler divergence.

**Remark 1.2.** The relative entropy is *not* a distance; it is not symmetric in p and q and does not satisfy the triangle inequality.

We want to show that  $D(p \parallel q) \ge 0$ . Note that

$$I(X;Y) = D(p(x,y) \mid\mid p(x)p(y)),$$

where p(x, y) is the joint distribution of (X, Y) and p(x)p(y) is the distribution of  $(\widetilde{X}, \widetilde{Y})$ , where  $\widetilde{X} \stackrel{d}{=} X$ ,  $\widetilde{Y} \stackrel{d}{=} Y$ , and  $\widetilde{X}, \widetilde{Y}$  are independent. So we will get  $I(X;Y) \ge 0$  if we can prove  $D(p \mid \mid q) \ge 0$  in general.

The relative entropy is a natural statistical quantity that measures how far p is from q. So the conceptual meaning of I(X;Y) is that it measures how far apart the joint distribution of (X,Y) is from being a product distribution of independent X,Y.

**Proposition 1.1.**  $D(p \mid\mid q) \ge 0$ .

Proof. Write

$$D(p \mid\mid q) = \sum_{z \in \mathscr{Z}} q(z) \frac{p(z)}{q(z)} \log \frac{p(z)}{q(z)}$$

$$= \sum_{z \in \mathscr{Z}} q(z) \phi\left(\frac{p(z)}{q(z)}\right),$$

where  $\phi : \mathbb{R}_+ \to \mathbb{R}$  is given by  $\phi(u) = u \log u$ , which is convex (checked below). Using Jensen's inequality,

$$\geq \phi\left(\sum_{z \in \mathscr{Z}} q(z) \frac{p(z)}{q(z)}\right)$$
$$= \phi(1)$$
$$= 0.$$

To check that  $\phi$  is convex, we have  $\phi'(u) = \log_2 e(\log_e u + 1)$ , so  $\phi''(u) = \log_2 e \cdot \frac{1}{u} \ge 0$ .  $\Box$ Corollary 1.1.  $I(X;Y) \ge 0$ .