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1 Entropic Quantities Relating Random Variables

1.1 The binary entropy function

Suppose we have a probability distribution p = (p1, . . . , pd) on a finite set of X of size d,
say X = {1, . . . , d}. We will use the notation [d] = {1, . . . , d}. The function

H(p1, . . . , pd) = −
d∑

j=1

pi log pi

is called the entropy of the distribution p. Last lecture we saw thatH ≥ 0 andH(p1, . . . , pd) ≤
H(1/d, . . . , 1/d) = log d as a consequence of the concavity of H as a function on the
unit d-simplex. Concavity of H means that for λ ∈ [0, 1], H(λp(1) + (1 − λ)p(0)) ≥
λH(p(1)) + (1− λ)H(p(0)).

Example 1.1. For d = 2, H(p, 1 − p) = −p log p − (1 − p) log(1 − p). We denote this as
h(p).
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The function h(p) is known as the binary entropy function. The graph is very steep
near 0; all the derivatives approach ∞. h(1/2) = 1, and h(p) = h(1− p). We can calculate

h′(p) = log2 e(− loge p− 1 + loge(1− p) + 1)

= log
1− p
p

,

which is +∞ at p = 0 and −∞ at p = 1. We can check

h′′(p) = log2 e

(
− 1

1− p
− 1

p

)
,

which is −∞ at p = 0 and p = 1.

1.2 Convexity and Jensen’s inequality

Definition 1.1. A set D ⊆ Rn is convex if when λ ∈ [0, 1] and x(0), x(1) ∈ D, λx(0) +
(1− λ)x(1) ∈ D, as well.

Definition 1.2. A function f : D → R where D ⊆ Rn is a convex set is called a convex
function if for all λ ∈ [0, 1] and x(0), x(1) ∈ D, we have

f(λx(1) + (1− λ)x(0)) ≤ λf(x(1)) + (1− λ)f(x(0)).

This implies that if for any m ≥ 1, x(1), x(2), . . . , x(m) ∈ D and any probability distri-
bution (λ1, . . . , λm) on [m], we have

f

(
m∑
i=1

λix
(i)

)
≤

m∑
i=1

λif(x(i)).

More generally, we have the following:

Theorem 1.1 (Jensen’s inequality). For any random variable Z taking values in a convex
set D ⊆ Rn,

f(E[Z]) ≤ E[f(Z)].

1.3 Joint and conditional entropy

If X is a random variable taking values in [d], we write H(X) for H(p1, . . . , pd), where
pi := P(X = i). If X takes values in X , then H(X) denotes H(p(x), x ∈ X ), where
p(x) := P(X = x). Now suppose X takes values in X and Y takes values in Y , where
X ,Y are finite sets. They have a joint probability distribution (p(x, y), (x, y) ∈X ×Y ).
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Definition 1.3. The joint entropy of the pair (X,Y ), which is just a random variable
taking values in X × Y , is denoted H(X,Y ) and equals

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y).

Definition 1.4. The difference H(X,Y )−H(X), denoted H(Y | X), is called the condi-
tional entropy of Y given X.

Recall that the entropy is H(X) = E[log 1/p(X)]. The joint entropy can be written
similarly:

H(X,Y ) = E
[
log

1

p(X,Y )

]
.

We can also write the conditional entropy as

H(Y | X) = E
[
log

1

p(Y | X)

]
=
∑
x,y

p(x, y) log
1

p(y | x)

=
∑
x

p(x)
∑
y

p(y | x) log
1

p(y | x)
.

For each fixed x ∈ X ,
∑

y p(y | x) log 1
p(y|x) is denoted H(Y | X = x). It is the entropy of

the conditional distribution of Y given that X = x. With this notation,

H(Y | X) =
∑
x

p(x)H(Y | X = x).

Remark 1.1. This notation is not consistent with the rest of probability notation. H(Y |
X) is a number, rather than a random variable. This notation is widespread in information
theory, however, because it was introduced by Shannon himself.

From this formula, we can see that H(Y | X) ≥ 0.

1.4 Mutual information

We might hope that we “learn” about Y from observing X, i.e. the uncertainty in Y is
reduced. That is, we hope that H(Y ) ≥ H(Y | X). This is true.

Definition 1.5. H(Y )−H(Y | X) is denoted I(X;Y ) (or sometimes denoted as I(X∧Y ))
and is called the mutual information between X and Y .
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We have

I(X;Y ) = E
[
log

1

p(Y )

]
− E

[
log

1

p(Y | X)

]
= E

[
log

p(X,Y )

p(X)p(Y )

]
=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

This is symmetric when X and Y are interchanged. That is, I(X;Y ) = I(Y ;X).

1.5 Relative entropy

I(X,Y ) ≥ 0 because it is a relative entropy.

Definition 1.6. Given two probability distributions (p(z), z ∈ Z ) and (q(z), z ∈ Z ), we
write

D(p || q) =
∑
z∈Z

p(z) log
p(z)

q(z)
,

which is called the relative entropy of p with respect to q. It is also called the informa-
tion distance/divergence of p from q or the Kullback-Leibler divergence.

Remark 1.2. The relative entropy is not a distance; it is not symmetric in p and q and
does not satisfy the triangle inequality.

We want to show that D(p || q) ≥ 0. Note that

I(X;Y ) = D(p(x, y) || p(x)p(y)),

where p(x, y) is the joint distribution of (X,Y ) and p(x)p(y) is the distribution of (X̃, Ỹ ),

where X̃
d
= X, Ỹ

d
= Y , and X̃, Ỹ are independent. So we will get I(X;Y ) ≥ 0 if we can

prove D(p || q) ≥ 0 in general.
The relative entropy is a natural statistical quantity that measures how far p is from

q. So the conceptual meaning of I(X;Y ) is that it measures how far apart the joint
distribution of (X,Y ) is from being a product distribution of independent X,Y .

Proposition 1.1. D(p || q) ≥ 0.

Proof. Write

D(p || q) =
∑
z∈Z

q(z)
p(z)

q(z)
log

p(z)

q(z)
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=
∑
z∈Z

q(z)φ

(
p(z)

q(z)

)
,

where φ : R+ → R is given by φ(u) = u log u, which is convex (checked below). Using
Jensen’s inequality,

≥ φ

(∑
z∈Z

q(z)
p(z)

q(z)

)
= φ(1)

= 0.

To check that φ is convex, we have φ′(u) = log2 e(loge u+ 1), so φ′′(u) = log2 e · 1u ≥ 0.

Corollary 1.1. I(X;Y ) ≥ 0.
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