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1 Entropic Quantities Relating Random Variables

1.1 The binary entropy function

Suppose we have a probability distribution p = (p1,...,pq) on a finite set of 2~ of size d,
say & ={1,...,d}. We will use the notation [d] = {1,...,d}. The function

d
H(py,...,pa) = — Y _pilogpi
j=1

is called the entropy of the distribution p. Last lecture we saw that H > 0 and H (p1,...,pq) <
H(1/d,...,1/d) = logd as a consequence of the concavity of H as a function on the
unit d-simplex. Concavity of H means that for A € [0,1], H(\p™ + (1 — X\)p@) >
AH (pM)) + (1= N H(p®).

Example 1.1. For d = 2, H(p,1 —p) = —plogp — (1 — p)log(1 — p). We denote this as
h(p).




The function h(p) is known as the binary entropy function. The graph is very steep
near 0; all the derivatives approach co. h(1/2) =1, and h(p) = h(1 — p). We can calculate

W (p) = logy e(—log, p — 1 4 log, (1 — p) + 1)
1—p

= log

which is +00 at p =0 and —oo at p = 1. We can check

1 1
' (p) = log e<——>,
(1) =togze (7=~

which is —oco at p =0 and p = 1.

1.2 Convexity and Jensen’s inequality

Definition 1.1. A set D C R” is convex if when A € [0,1] and (@ 21 € D, Xz(© +
(1 =Xz € D, as well.

Definition 1.2. A function f: D — R where D C R" is a convex set is called a convex
function if for all X € [0,1] and (), z(1) € D, we have

FOE® + (1= 0)z@) < Af@D) + (1= A ().

This implies that if for any m > 1, 1,23, ... 2™ e D and any probability distri-
bution (A,...,Am) on [m], we have

f <§: >\1£E(i)> < i Aif ().
i=1

i=1
More generally, we have the following:

Theorem 1.1 (Jensen’s inequality). For any random variable Z taking values in a convex
set D C R",

f(E[Z]) <E[f(Z)].

1.3 Joint and conditional entropy

If X is a random variable taking values in [d], we write H(X) for H(p1,...,pq), where
pi = P(X =i). If X takes values in 2", then H(X) denotes H(p(x),z € Z), where
p(x) := P(X = x). Now suppose X takes values in 2" and Y takes values in %, where
2, % are finite sets. They have a joint probability distribution (p(x,y), (z,y) € Z x #).



Definition 1.3. The joint entropy of the pair (X,Y'), which is just a random variable
taking values in 2" x ¢/, is denoted H(X,Y) and equals

H(X,Y) ==Y p(z,y)logp(z,y).

z,y

Definition 1.4. The difference H(X,Y) — H(X), denoted H(Y | X), is called the condi-
tional entropy of Y given X.

Recall that the entropy is H(X) = E[log1/p(X)]. The joint entropy can be written
similarly:

1
H(X,)Y)=E log] .
oY) [ p(X,Y)
We can also write the conditional entropy as
1
HY|X)=E [log
= Zp z,y)log =
p(y | x)
= S0t Loty | 0low
®ply )

For each fixed z € 27, > p(y | z) log o is denoted H(Y | X = z). It is the entropy of
the conditional distribution of Y given that X = x. With this notation,

H(Y | X) Zp HY | X =2).

Remark 1.1. This notation is not consistent with the rest of probability notation. H(Y |
X) is a number, rather than a random variable. This notation is widespread in information
theory, however, because it was introduced by Shannon himself.

From this formula, we can see that H(Y | X) > 0.

1.4 Mutual information

We might hope that we “learn” about Y from observing X, i.e. the uncertainty in Y is
reduced. That is, we hope that H(Y) > H(Y | X). This is true.

Definition 1.5. H(Y)—H(Y | X) is denoted I(X;Y") (or sometimes denoted as I(X AY))
and is called the mutual information between X and Y.



We have

{ } ® 1o o5
p(Y | X)
T pxY)
ﬁ
p(z,y)
= p(z,y)log ———~
E; p(x)p(y)
This is symmetric when X and Y are interchanged. That is, I(X;Y) = I(YV; X).

1.5 Relative entropy

I(X,Y) > 0 because it is a relative entropy.

Definition 1.6. Given two probability distributions (p(z),z € ) and (¢(z),z € &), we

write
B Z()M@
D@H@—E;M)lg“@,

which is called the relative entropy of p with respect to ¢. It is also called the informa-
tion distance/divergence of p from ¢ or the Kullback-Leibler divergence.

Remark 1.2. The relative entropy is not a distance; it is not symmetric in p and ¢ and
does not satisfy the triangle inequality.

We want to show that D(p || ¢) > 0. Note that

I(X;Y) = D(p(x,y) || p()p(y)),

where p(x, ) is the joint distribution of (X,Y) and p(z)p(y) is the distribution of (X,Y),

where X < X, y 4 Y, and )A(:, Y are independent. So we will get I(X;Y) > 0 if we can
prove D(p || ¢) > 0 in general.

The relative entropy is a natural statistical quantity that measures how far p is from
q. So the conceptual meaning of I(X;Y’) is that it measures how far apart the joint
distribution of (X,Y) is from being a product distribution of independent X, Y.

Proposition 1.1. D(p|| ¢) > 0.

Proof. Write

D@Hw:Ejﬂ@ﬂﬁk%ﬂﬁ



=Y al2)¢ (2)8) :
zeZ

where ¢ : Ry — R is given by ¢(u) = ulogwu, which is convex (checked below). Using

Jensen’s inequality,

AP2)
> ¢ <gq( )q(z)>
= ¢(1)

—0.

To check that ¢ is convex, we have ¢/(u) = log, e(log, u+ 1), so ¢ (u) =logye-1 >0. O
Corollary 1.1. I(X;Y) > 0.
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